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[10]Cycloparaphenylene ([10]CPP) was selectively synthesized in four steps in 13% overall yield from commercially available 4,4'-diiodobiphenyl
by using mono-1—Sn exchange, Sn—Pt transmetalation, |—Pd exchange, and subsequent oxidative coupling reactions. The single-crystal X-ray

structure of [10]CPP is described.

Cycloparaphenylenes (CPPs), which consist of para-
connected phenylene rings (Figure 1), have recently
attracted a great deal of attention from synthetic and
theoretical viewpoints because of their potential ap-
plications in electronics, photonics, and host—guest
chemistry.' ~® Due to the recent progress in the synthe-
sis of CPPs, as described below, their unique proper-
ties, such as size-dependent photophysical, electronic,
and redox properties’ ™ and size-selective host—guest
chemistry,'® are being unveiled.
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Figure 1. Structure of [#]CPPs.

Despite their simple structure and the intensive synthetic
efforts devoted to them over a half century,':'* CPPs only
became available recently because of the work of three
research groups, including our own. Jasti and Bertozzi
utilize cyclohexa-2,5-diene-1,4-diyl as the key units for the
construction of the cyclic structure, and the diyl is aroma-
tized in the final step to afford [9]-, [12]-, and [18]CPPs.’
More recently, Jasti applied this strategy to selectively
synthesize [7]-'> and [6]CPPs.'* Itami and co-workers
utilize cyclohexane-1,4-diyl as the key component and

(13) Sisto, T. J.; Golder, M. R.; Hirst, E. S.; Jasti, R. J. Am. Chem.
Soc. 2011, 133, 15800.

(14) Xia, J.; Jasti, R. Angew. Chem., Int. Ed. 2012, 51, 2474.

(15) Takaba, H.; Omachi, H.; Yamamoto, Y.; Bouffard, J.; Itami, K.
Angew. Chem., Int. Ed. 2009, 48, 6112.

(16) Omachi, H.; Matsuura, S.; Segawa, Y.; Itami, K. Angew. Chem.,
Int. Ed. 2010, 49, 10202.



have size-selectively synthesized [9]-, [12]-, [14]-, [15]-, and
[16]CPPs'>~! and their derivatives.”* >* In contrast, we
utilize cyclic, cis-bisaryl-platinum complexes as precursors
for CPPs, and reductive elimination from the complexes
selectively affords [8]- and [12]CPPs.>* In addition, we have
reported that the same strategy is effective for the random
synthesis of [8]—[13]CPPs.® Isobe has utilized our strategy
to prepare the first optically active, simplest structural unit
of helical single-walled carbon nanotubes.?* Despite these
developments, the availability of CPPs in terms of size and
quantity has been quite limited. Therefore, a size-selective
and high-yielding synthetic route for CPPs is needed.

We envisioned that L-shaped cis-substituted bis(para-
haloaryl) platinum complex 1 could be used as a precursor
for a cyclic platinum intermediate, such as 2, by selective C—C
bond formation through selective C—X bond manipulation
(Scheme 1). Once 2 forms, reductive elimination of the pla-
tinum from 2 should give a CPP. We report here the selective
synthesis of [10]CPP from 1a (X = I, n = 2, L = cycloocta-
diene [cod]) by using the palladium-mediated coupling reac-
tion developed by Osakada as the key step.>>2° In addition, we
report the X-ray crystal structure of [ I0]JCPP for the first time.
During our investigation, Itami and co-workers reported the
selective synthesis of [9]—[11]- and [13]CPPs by using their cis-
1, 4-diphenylcyclohexane-1,4-diyl based strategy.”’

Commercially available 4,4'-diiodobiphenyl (3¢) was
treated with BuLi (1.0 equiv) in THF at —78 °C, followed
by Me;SnCl (1.0 equiv), to afford monostannylated

Scheme 1. Working Hypothesis on a New Synthetic Route for
CPPs
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biphenyl 3d in 84% yield (Scheme 2). Subsequent treat-
ment of 3d with Pt(cod)Cl, (0.50 equiv) in THF at 60 °C for
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8 h afforded the desired 1a in 96% yield. Then, 1a was
treated with Pd(dba), (2.0 equiv, dba = dibenzylidene-
acetone) and 2,2’-bipyridyl (bpy) in THF at 50 °C for 8 h.
After the solvent and free dba were removed by filtration,
the resulting solid material was treated with AgBF, (2.2
equiv) at room temperature in CH,Cl,/acetone for 12 h.
Although we anticipated the formation of [8]-, [12]-, or
[16]CPP via the selective dimerization, trimerization, or
tetramerization of 1a, respectively, we found that [10]CPP
formed exclusively from 'H NMR and mass spectrosco-
pies. [10]CPP was isolated, by using silica gel chromato-
graphy, in 16% overall yield from 1a (13% from 3c) and
was fully characterized by using '"H NMR (7.56 ppm in
CDCl;), *C NMR (127.5 and 138.3 ppm), and MALDI
TOF mass spectroscopies (m/z = 760.3136), the results of
which are identical to those in our previous report.®
Although a considerable amount of insoluble black solid,
presumably linear oligomers of biphenyls, was observed,
no other CPPs, besides [10]CPP, formed. Use of AgSbF or
AgOTf instead of AgBF, gave [10]CPP selectively in 10%
or 14% yield from 1a, respectively. In contrast, treatment
of 1a with Ni(cod), instead of Pd(dba), gave a mixture of

Scheme 2. Selective Synthesis of [10]CPP
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Figure 2. ORTEP drawing of [10]CPP-hexane. Thermal ellip-
soids are shown at 50% probability, and all hydrogen atoms are
omitted for clarity.
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[8]-, [10]-, [12]-, and [16]CPPs in 2, 0.5, 2, and 0.9% yields,
respectively.

The structure of [10]JCPP was determined by using
single-crystal X-ray analysis. Suitable crystals were ob-
tained by slow vapor diffusion of n-hexane into a solution
of [10]CPP in CH,Cl, at room temperature. An ORTEP
drawing is shown in Figure 2. In the solid state, [10]CPP is
slightly distorted to an ellipsoidal structure with major and
minor axes of 13.9 and 13.5 A, respectively. The cavity of
[10]CPP is occupied by a hexane molecule, which was
highly disordered. Although the Ds, structure with a

Figure 3. Packing structure of [I0]JCPP. Solvent molecules and
hydrogen atoms are omitted for clarity.

dihedral angle between two paraphenylene units of
32°-33° was calculated to be the most stable conformer,®
the structure is closer to a D,;, conformer with alternating
triphenylene and biphenylene units. The dihedral angles
between two paraphenylene units were approximately 20°
and 45°, respectively. The lower symmetry in the solid state
has been observed for [12]JCPP'® and could be due to the
crystal packing and/or inclusion of solvent molecules. The
average Czpso Czpsm Czpso Cortho» and Cortha_cortho bond
lengths are 1.484(1), 1.399(2), and 1. 385(9)A respectively,
and the bond lengths are consistent with theoretical calcu-
lations (Table 1).® A difference in their bond length is very
small within experimental errors, but the difference is
presumebly due to the strain of the benzene ring.

[10]CPP molecules pack in a herringbone manner along
the a axis (Figure 3a), and there are no significant
m—m interactions among [10]JCPP molecules. A tilted
tubular channel structure was observed along the b axis
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Table 1. Average C—C bond lengths (A) of [10]CPP in the Solid
State and Gas Phase from Calculations

X-ray calculation®
Cipso_cipso 1.484 1.485
Cipso—Cortho 1.399 1.407
Cortho_cortho 1.385 1.391

“B3LYP/6-31G* level of theory.®

(Figure 3b). The crystal packing is similar to [9]-"
[12]CPPs but different from [6]CPP."* The size of the CPP
may be important for determining the packing arrangement.
A plausible mechanism for the formation of [10]CPP
from 1a is illustrated in Scheme 3.?° Oxidative addition of
1a to a Pd(dba),/bpy species affords the corresponding
aryl-Pd(IT) complex 1b (Scheme 1; L, L’ may be cod or
bpy). The cationic Pd complex generated from 1b upon
treatment with a silver salt induces an aryl-coupling reac-
tion to give cationic Pd/Pt hybrid complex 4, from
which elimination of 4,4’-bispalladiumbiphenyl 5 occurs
to give triangular trinuclear platinum complex 6. Aryl
group migration between the Pt and Pd ions has already
been reported by Osakada.?®*® While cyclopropanes are
strained molecules due mainly to the bond angle distortion
from 110° to around 60°,% triangular complex 6 may not
induce that much strain, because the bond angle in cis-
coordinated Pt compounds is around 90°. Indeed, structu-
rally related triangular tris(4,4’-bipyridyl)tripalladium com-
plexes sometimes selectively form over the corresponding
square-shaped tetrapalladium complexes.*>*! Therefore,

Scheme 3. Plausible Mechanism for the Formation of [10]CPP

from 1a
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the formation of 6 presumably occurs without inducing
high strain. Reductive elimination of platinum from 6
selectively gives [10]JCPP. Although the addition of Br,
was needed to increase the efficiency of the reductive
elimination in our previous work,** no such additive was
needed under the current conditions. While further studies
are needed to clarify the detailed mechanism, this synthetic
route is attractive because it selectively gives [10]CPP, which
acts as a selective host for Cg.

In summary, a new, short, and selective synthetic route
for [10]CPP was developed. The overall yield of [10]CPP
from the commercially available starting material 3¢ was
reasonably high (13%), considering the highly strained
nature of [I0]JCPP. A trinuclear triangle-shaped platinum
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intermediate is proposed to account for the formation of
[10]CPP. For the first time, single-crystal X-ray analysis of
[10]CPP was performed.
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